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Abstract

Measured changes in vegetation indicate the dynamics of ecological processes and can

identify the impacts from disturbance. Traditional methods of vegetation analysis tend to be

slow because they are labor intensive; as a result, these methods are often confined to small local

area measurements. Scientists need new algorithms and instruments that will allow them to

efficiently study environmental dynamics across a range of different spatial scales. Presented is a

new methodology that address this problem. This methodology includes the acquisition, process-

ing and presentation of near ground level (NGL) image data and its corresponding spatial

characteristics. The systematic approach taken encompasses a feature extraction process, a

supervised and unsupervised classification process, and a region labeling process yielding spatial
information.

1. Introduction

1.1. Motivation

During the 1990's NASA will establish a new remote sensing system, the Earth Observa-

tion System (EOS), with a variety of sensors and resolutions. Interpretation of the data at

different resolutions will require ground level validation and correlation studies that quantify the

heterogeneity of the environment over the range of spatial scales. Both transect sampling (NGL

sensing) and remote sensing (satellite sensing) provide data that can identify changes in

landscape[l]. Changes in species populations represent shifts in community organization that

typically show temporal and spatial variation. Changes in organization among species can occur

randomly or in response to governing biotic and abiotic factors[2]. These types of changes can

not be detected accurately at the satellite sensing level, and currently the NGL methods used to

determine change are typically labor intensive and slow. Thus, there exists a need to develop a

new methodology to analyze the NGL sensed data.

This new methodology, also should provide the scientist with information that correlates

satellite imagery with NGL imagery. For example, the spectral signature for a pixel in a satellite

image provides a single, integrated measure of the ecological patterns within the ground surface

area represented by the pixel. The same pixel value may be the result of diverse ground condi-

tions. Without finer resolution imagery it is impossible to determine whether this signature
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correspondsto a uniform cover of vegetation or various combinations of vegetation patterns.

For the ecological community to make full use of remotely sensed data, it is critical to provide a

way to relate the integrated reflectance values to the variety of vegetation patterns that occur at
different scales.

1.2. Summary of the NGL Methodology

The NGL sensing system provides absolute and relative measurements of ground level

vegetation. The NGL measurement process starts with the acquisition of 35ram color slide

images of field plots. The field plot images, ranging in resolution from lmm to lcm, and varying
in size from 0.5 m 2 to 10 m 2, are obtained using a camera gimbal mounted on a boom. Each

rectangular plot is comer marked for later spatial registration. The NGL image is digitized with

a high resolution, 4000 by 6000 pixels, slide scanner, and then image analysis is performed using
a workstation based software system called Khoros (see Appendix).

The NGL images are comprised of only three spectral bands in the visual region of the

spectrum: red, green and blue (RGB). Since the NGL images do not contain spectral information
in the infrared region, the image processing analysis that allows differentiation between plant

species and the differentiation of above ground biomass and bare ground is more difficult.

TRAINING PRODUCTION

Figure 1. Block diagram of NGL methodology.

The NGL image analysis employs four related components: preprocessing, feature extrac-

tion, classification, and region analysis, see Figure 1. Preprocessing can involve warping the

image to achieve spatial registration, median filtering to reduce noise, and hnage cropping.

Once image preprocessing is complete, pixel features can be extracted. Pixel features include

spectral information, local statistical measures, and various texture measures such as Hurst frac-

tal dimension or the Laws' texture metrics. Representation of the RGB triples in other color

spaces often allows for a better segmentation. Local statistical operations that can be computed

using Khoros include: mean, variance, contrast, second angular moment, zero order entropy,

and dispersion. Spatial feature extraction can be performed on one, all, or a ratio of the prepro-

cessed RGB data bands.
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The original spectral bands (RGB) and the feature bands of data are then combined to pro-

duce a multiband image. The concept of a multiband image is analogous to a multispectral

image; each pixel in the image now contains many elements or attributes (spectral reflectance

and features). Since a pixel contains many elements it can be thought of as a vector, where each

element in the vector represents a different attribute associated with the pixel. This data organi-
zation lends itself to general classification methods.

The overall classification process first involves a one-time training phase that produces a

mapping that is then used in the production phase. The training phase is a two part process,

unsupervised classification followed by supervised classification. The unsupervised

classification portion of the training phase is used to, (1) reduce the complexity and the dimen-

sionality of the multiband image, and (2) determine the inherent structure of the data based

solely on reflectance and texture measurements, which are unconstrained by external knowledge

of the data. The supervised classification step allows an analyst to map the clusters determined

by the unsupervised classifier to specific desired classes. The motivation for using the unsuper-

vised classifier first is to reduce the complexity associated with the supervised classification. It

has been found that combining the two types of classifiers in this manner produces relatively

accurate decision boundaries, and therefore near minimal classification error[3][4].

After a single pass of the training process, object features are obtained that can be added to

the original multiband image. This multiband image is used as a new input to the training pro-

cess, see Figure 1. Object features such as geometric moments, fractal dimension and morphol-

ogy supplement the pixel features used in the previous pass to produce a more accurate

classification. The final result of the training phase will produce data vectors that represent the
different cluster means and variances.

The second phase of the classification process uses the results, cluster means and variances,

obtained in the training phase to classify other images that fit in the same representative set used

in the training phase. Algorithms as simple as a minimum distance classifier, or as robust as the

approximated likelihood ratio detector are available in Khoros. The classification process is fol-

lowed by spatial analysis. Percent coverage of above ground biomass and individual plants is

calculated. This information is the basis for the time series analysis that then can be correlated

with changes seen at the remote sensing level.

This methodology has been applied to the analysis of images for the Sevilleta Long Term

Ecological Research, LTER, project. The National Science Foundation LTER program supports

research on long-term ecological phenomena at a national network of sites. One major goal of

the LTER project is to study long-term trends in natural ecosystems that have not previously

been systematically monitored. The NGL methodology is capable of analyzing image data

acquired from large transect plots and small fertilizer plots. A time series analysis of this data

can be accurately tracked and eventually correlated with changes seen at the global level. This

methodology provides a link that will allow ecological phenomena that occur on large time

scales to be investigated.

2. Theory of the NGL Classification System

2.1. Image Preprocessing

Image preprocessing for the NGL images acquired at the Sevilleta LTER site only require

geometric correction and image cropping. Median filtering was originally used to reduce noise

artifacts, but the final spatial measurements exhibit distortion caused by the smoothing effects of
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thefilter.
Since the NGL dataarecapturedusinga 35ramcameragimbalmountedon a boom,the

imagewill bedistortedbecauseof camerapositionandterraintopology. Thecornermarkersin
the imageprovide tie pointsthatwill allow theimageto bewarpedbackto thecorrectgeometry.
Sincethe acquisitionsystemuses35ramslides,thexy pixel ratio in the imageis 2/3, andmustbe
correctedback to a 1/1pixel ratio whenthe slidesaredigitized. The Khoros interactive image

editor allows a user to select the image corner points and record the xy locations as source tie

points. The user must then specify the distance between the tie points. From this information

the destination tie points may be computed. The following table and equations describe the des-

tination tie point computations

L
0_ = 1 (1)

(X-2 +y-2) 2

Where" x'= k(xpl-Xp2) y'= k(ypl-yp2)

P 1 is some tie point

P 2 is some other tie point

k is a pixel aspect ratio constant

L is the actual distance between p 1 and p 2 in meters

is the new coordinate position translation factor

Source tie points

(Xl,Y 1)

(x2,Y2)

(x3,Y3)

(x4,y4)

Destination tie points

(0,0)+(x 1,Y 1)

(1,0)+(x 1,y 1)
0_

( 1---,!)+(X 1,y 1)
Ot

(0, _1 )+(X 1 ,Y 1)

The next step in the registration process is to use the four source and destination fie point

pairs to compute the coefficients for two first-order equations that will be used to perform the

image registration. In some cases, a wide angle lens causes severe image distortion. This

requires the use of more than four tie points, resulting in a higher order warping polynomial.

The original image is warped using the computed polynomial equation and bilinear interpola-

tion, and then cropped using the destination tie points.

2.2. Feature Extraction

Texture measures are typically computed on a single band image, necessitating the reduc-

tion of the RGB image to a single band image. This reduction is performed using a color quan-

tizer that reduces the image from 16.7 million colors (3 bands) to 256 colors (1 band). Alterna-

tively, the RGB image can be converted to the HSV (Hue, Saturation, and Value) color space

with the spatial measures computed on the value band.
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Simple statistical parameters based on local area measurements over a small moving win-

dow are commonly used to provide texture information[5]. The statistical parameters, mean and

variance, are based on the central moments and are used to provide an indication of how uniform

or regular a region is. Contrast provides a measure of the dissimilarity of the intensity values in

the image, and angular second moment yields a measure of uniformity or homogeneity of the

gray level values. An indication of the texture nonuniformity is provided by a measure of the

entropy. Texture measures based on these statistical parameters did not yield any new informa-

tion that aided in the classification process. For this reason, features based on simple statistical

parameters were not used.

Although numerous texture measures have been proposed to characterize the spatial texture

features in an image, good results have been obtained using a set of spatial convolution masks

proposed by K. I. Laws[6]. The Laws' texture masks are comprised of a set of 5 by 5 masks that

are convolved over the entire image[7]. The masks are intended to be sensitive to visual struc-

tures such as edges, ripples, and spots.

Each of the Laws' texture masks are derived from a set of five basic vectors. There are a

total of 25 possible masks, each formed by multiplying two of the five vectors together. They

are designed to act as matched filters for certain types of quasiperiodic variations commonly

found in textured regions.

Various texture masks were tried in order to achieve good discriminating power between

adjacent regions in the image. The set of texture masks that provided the best results include the

L5E5 and E5L5 masks. The L5E5 and E5L5 masks are constructed by multiplying the L5 and

E5 vectors, yielding the following texture masks:

Ii464i] I202il- -8 -12 -8- -8 0 8
L5E5= 0 0 0 E5L5= - -12 0 12

8 12 8 4 -8 0 84 64 - -202

The L5E5 mask tends to detect edges arising from horizontal changes in texture, while the E5L5

mask detects texture changes in the vertical direction.

Once the spatial texture features are extracted by convolving each mask with the gray level

image, an additional feature selection step is used to reduce the dimensionality of the

classification process. This involves a 50% blending of the two texture bands into one texture

band that contains the information extracted by each of the texture masks. By using one texture

band, the overall weighting of the texture features relative to the spectral image information is

reduced. This provides a more representative weighting of the original spectral information

relative to the spatial texture information in the classification process.

2.3. Classification

As was mentioned above, the classification process is a two phase process. The first phase

is considered the training phase, while the second phase implements the actual classifier and is

referred to as the production phase. The training phase is further broken into two parts, unsuper-

vised classification and supervised classification. The unsupervised training determines the

inherent structure of the data, unconstrained by external knowledge about the vegetation pat-

terns, while the supervised training imposes the analyst's knowledge of the vegetation patterns to

constrain the results. The final objective of the classification process is to reduce a large data set
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(themultibandimage)into afew classesin asinglebandimage.

2.3.1. Training Phase
The goal of the training phaseis to producean ensembleof data that characterizesa

representativeset of NGL images,so that other imageswith similar characteristicscan be
automatically classified (the production phase). In the unsupervised classification portion of the

training phase the algorithm maps areas on the ground that have similar texture and spectral

reflectance characteristics to the same cluster. The resulting clusters assigned to the image pix-

els therefore represent different classes that may or may not correspond to the classes of ground

objects that we are ultimately interested in mapping. A good example of such a situation is the

mapping of shadow areas and wet or dark soil areas. The analyst may want to ultimately con-
sider both of these classes as bare ground, but each may represent a separate cluster as produced

by the unsupervised classifier. The output of the unsupervised classifier is a single band pseudo

colored image that represents a map of the clustered pixel vectors, the cluster centers (means),
and variances. The mean and variance data represent the ensemble of data that characterizes a

specific set of NGL images.

Image data that represents specific areas to be classified are submitted to the unsupervised

classifier. The unsupervised classifier is implemented as a clustering algorithm that will deter-

mine the natural groupings of clusters of the data in K-dimensional feature space. The cluster

centers represent an estimate of the probability density function. The cluster centers are then

assigned to classes during the supervised classification. The determination of clusters is accom-

plished by the K-means clustering algorithm[8].

The K-means algorithm is a partitional algorithm that attempts to minimize the sum of

squared errors in its cluster assignments. The similarity measure used is the Euclidean distance.

The K-means algorithm partitions the data space by using a search method where patterns are

moved from one cluster to another until all patterns belong to a cluster. Each cluster is identified

by a single cluster center (mean) and cluster variance. Since the K-means algorithm uses the

Euclidean distance as a similarity measure, it is vital that the features previously determined are

weighted so as not to bias the results produced by K-means. The performance of K-means is

improved if the feature pixel vectors are orthogonal. In practice, however, this is rarely the case.

Therefore, it is best to over-cluster the pixel vectors resulting in a less refined classification.

Experiments show that the number of clusters produced by K-means should be about four

to seven times the final number of classes desired. The cluster centers provide the location in

K-dimensional space for each cluster, while the variance describes the size and orientation of

each cluster. This information is used in the supervised classification described below.

The output of the unsupervised classifier provides a mapping of pixels in the original image

to different clusters. The clusters produced by the unsupervised classifier are usually not the

desired classes; the object of the supervised classifier is to map each cluster to a desired class.

The supervised classification process is performed manually using the Khoros image editor. The

Khoros image editor allows the analyst to display both the clustered image and the original

image. Cluster numbers in the clustered image can then be assigned to specific desired classes.

The resulting mapping of clusters to specific desired classes will be used in the production phase

of the classification process.

Often the data in a cluster may need dividing because it is spread over multiple desired

classes. The P(m,L) fractal algorithm can be used to help determine the splitting of the clusters.
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The P(m,L) distribution is obtained from the unsupervised classification image data. Fre-
quency distributions for each class m, are determined for a series of different window sizes, L.

The resulting probability distribution should provide valuable information describing the aggre-

gation of classified pixels in the NGL image.

The P(m,L) probability density function has moments that vary with the measurement

scale. This scale dependent characteristic of the moments provides a framework for transform-

ing plant coverage estimates from one scale to another. It has been found that natural landscapes

often exhibit consistent changes in the fractal dimensions over a range of moments[9]. This pro-

vides a way of measuring the degree of relationship from one scale to another.

Once the moment bands have been determined, they will be appended to the multiband

image containing the spectral and texture bands. This image will then be reprocessed by the

training phase. The result of this iterative processing will produce statistics (cluster means and

variances) that better describe the desired classes.

2.3.2. Production Phase

The object of the this phase is to take the mapping obtained in the training phase and allow

unsupervised classification of subsequent images that are considered to be in the same represen-

tative data set as used during training. It is required that the same feature extraction process is

performed on the new images as was performed on the training set. The unsupervised classifier

used in this phase is the approximated likelihood ratio detector (ALRD). The ALRD uses the

cluster centers, cluster variances, and cluster to class mapping to classify new images. This

robust unsupervised algorithm is not limited to detecting whether a pixel vector belongs to a sin-

gle class. A pixel vector can be assigned to multiple classes and through a thresholding test

determine to which class the pixel best belongs. If a pixel vector does not have a high enough

probability to belong to any class, then it is considered an outlier, and thus unclassifiable. This

algorithm uses the ratio of the distance of a pixel vector to a cluster center to each diagonal ele-

ment of the covariance matrix (variance elements), to determine to which class a pixel belongs.

In other words, the algorithm computes the probability density function of all clusters that

belong to a class and then determines if a data point has a high enough probability to belong to

that class. The diagonal of the covariance matrix is computed by Equation (1) while Equations

(2) and (3) perform the likelihood ratio test.

"--_il_=l (Xoil-moi) 2"

1 Ni

-_i l_=l(X lil-m li) 2

diag (Ci) =

Ni

_2i / (2)

where Ni is the number of points in the ith class, m i is the cluster mean, l is an index into the list

of data points belonging to ith cluster, and n is the dimensionality of the vector.

D I lXji-mill2
Pi = ]_ 2 (3)

j =0 K(Yji
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Pi is the likelihood ratio of the ith class, D is the dimension of the unclassified data vector X, and

K is a tuning parameter.

Ino class if > 1Pi

classx = [class i if Pi < 1 minimum (Pi) (4)

The diagonal of the covariance matrix and the cluster means are computed during the training

process. The similarity measure used by the ALRD is the same as that used in the K-means algo-

rithm, the Euclidean distance. The tuning factor adjusts the likelihood ratio, which either
increases or decreases the number of outliers detected.

The ALRD is used rather than the minimum distance classifier because it allows for outlier

or unclassifiable pixels. This reduces the size of the training set because it eliminates the need to

classify every possible pixel vector. The ALRD also uses both the size and orientation of the

classes in K-dimensional feature space to aid in classifying new pixels.

2.4. Region Analysis

The final step in the NGL inaage analysis is the calculation of class and region moments

[10]. For example, in the case of a two class image (above ground biomass and bare ground), the

area calculations result in percent vegetation cover. More detailed information can be obtained

by labeling the individual objects in the two class image and then calculating moments.

Labeling of individual objects is based on the splitting and merging of regions, where the

decision metric is the gradient between eight-connected neighbors. The labeling algorithm uses

either the difference between the gray levels of adjacent pixels or the Euclidean distance

between adjacent pixel vectors as the gradient value. If the gradient value is less than a threshold

the regions are merged. The moment calculations (standard, central, and invariant) on the result-

ing labeled regions give detailed spatial information on each object. This information provides

the analyst with the necessary information to track individual plant changes over time.

The region analysis algorithm generates two images; (1) an axis image that contains a cross

for each region with the cross centroid located at the center of the object, and (2) a region out-

line image or contour image. Overlaying the outline image upon the original RGB image or the

axis image, provides the analyst with a means of visual interpretation and verification. This

assists in the time series analysis since it allows the analyst to visually track the vegetation

changes.

3. Discussion of a Specific Example

The NGL methodology has been applied to helping ecologists at the Sevilleta LTER site

track the vegetation change in both transect and fertilizer plots. The transect plot dimensions are

usually 10m by 5m, and fertilizer plots are usually lm by 0.5m. The following example will

illustrate the results obtained by using the NGL methodology on transect images. A representa-

tive image of a transect area in the field is used as the training pattern, then another image is

classified based on the results from the training. In this example, vegetation is segmented from

all other matter, thus a two class problem.

This example begins with a representative transect plot image, Figure 2, that has been spa-

tially registered and cropped.
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Figure 2. Representative transect plot image.

The next step in the process is to compute pixel features. Pixel features are computed using

the Laws' texture metrics. Since these metrics only work an a single band image, the original

RGB image must be compressed down to a single band. This is performed using the color quan-

tizer method. Two different Laws' texture kernels, E5L5 and its transpose L5E5, are convolved

with the one band image producing two single band images that are blended together producing

another single band image, shown in Figure 3.

The texture band is then appended to the end of the original RGB image. This new multi-

band image is used in the classification training process. The K-means algorithm, produces a

single band cluster number image shown in Figure 4.

Figure 5 illustrates a plot of the distribution of the cluster centers. Each row of impulses

represent a different set of cluster center values. This plot gives a visual interpretation of the
correlation between different cluster centers.

The next step is the supervised classification phase of the training. Cluster numbers are

assigned to specific classes using the Khoros interactive image editor. The result of the super-

vised classification is shown in Figure 6.

At this point the training can stop if all the clusters have been mapped to the desired

classes. Otherwise, object features are computed and the system is retrained. In this example all

clusters have been mapped to the two desired classes. This ends the training phase.
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Figure 3. Laws' texture band.

Figure 4. Cluster number image.
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Figure 6. Resulting class image after training phase.
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With theresultsproducedby thetrainingphase,otherimagesfrom the samerepresentative
setcanbeclassifiedusingtheapproximatedlikelihood ratio detector.Thenewimageto classify
is shownin Figme7.

Figure7. Transectimageto beclassified.

The sameimagepreprocessing and feature extraction is performed on this image as on the

training image, resulting in a multiband image. The result of the unsupervised classification is

shown in Figure 8.

The final step is to perform region and class analysis to determine the desired spatial infor-

mation. Figure 9 illustrates the result of the analysis procedure. This image shows the size of the

regions by outlining them and the orientation by the crosses in each outlined region. In this

example the percent coverage of vegetation is 38.43%.

This example illustrates the applicability of the NGL methodology for the Sevilleta LTER

project. The system is planned for production use by the end of the year. The ecologists see this

approach as critical to the successful and timely analysis of the thousands of transect and fertil-

izer plot images required by the project.
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Figure 8. Resulting image after classification.

Figure 9. Region outline image.
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4. Conclusion

This paper presents a new methodology for ground level vegetation analysis. It emphasizes

an integrated approach using existing algorithms and introduces a new classifier, the approxi-
mated likelihood ratio detector. Some of the techniques used in the analysis of the NGL imagery

include preprocessing, feature extraction, classification, and region analysis. The goal is to
allow the scientist to correlate information obtained at the satellite sensing level with more

detailed information contained in the NGL imagery. Existing techniques based on satellite

imagery do not provide enough detailed information for a complete vegetation analysis. The

approach presented here provides a means of accurately tracking and quantifying the vegetation

changes across a range of different scales. Future development of this system includes the

integration of spatial results of NGL images into GIS.
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Appendix

The Khoros system integrates multiple user interface modes, code generators, instructional

aids, data visualization, and information processing to produce a comprehensive image process-

ing research tool. This system can easily be tailored to other application domains because the

tools of the system can modify themselves as well as the system. This attribute is important in a

system that is designed to be extensible and portable.

The Khoros infrastructure consists of three major components: a high level user interface

specification, methods of software development embedded in a code generation tool set, and an

interoperable data exchange format and algorithm library. These basic facilities have been used

to build a set of applications for performing image processing research, algorithm development,

and data visualization. One of the most powerful features of the system is its high-level, abstract

visual language.

Khoros is a successful demonstration of how development programming, end-user applica-

tions programming, information processing, data display, instruction, documentation, and

maintenance can be integrated to build a state-of-the-art image/data processing and visualization

software environment.
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